Connectivity and other Dangerous Topics

Use at your own risk

Resting State Connectivity

- There is no established way to do this
- All methods have issues
- Some words of caution
 - Never do connectivity in sensor space
 - Know that signal leakage exists
 - Make sure you know your data very well

Parameter File

CovBand	14 30
ImageBand	14 30
SmoothBand	02
СоvТуре	Global
DataSegment	0 480
Xbounds	-10 10
Ybounds	-8 8
Zbounds	-2 14
ImageStep	0.5
ImageMetric Power	
Model	MultiSphere
ImageDirectory	OUTPUT
MRIDirectory/MRI	
TimeStep	1.0
TimeInt	1.0
PropMu	4

Command Line

Output

EYZQADGL, beta_multisphere, 14-30Hz, PWR.nii

Normalize to Talairach space:

\$ 3dresample -dxyz 5 5 5 -prefix TT_N27resampled -inset TT_N27+tlrc

\$ 3dWarp -matvec_out2in mri/EYZQADGL/brain.Xat.1D -NN -gridset TT_N27resampled -prefix EYZQADGL,beta_multisphere,8-14Hz,PWR_tlrc.nii EYZQADGL,beta_multisphere,14-30Hz,PWR.nii

Concatenate all subjects

\$ 3dTcat -prefix ALL_subs_beta *beta*tlrc*.nii.gz

\$ afni

InstaCorr

- Simple correlations with a seed voxel
- Note that this is not how you would actually analyze your data, as this incorporates no leakage correction
- Nevertheless, it is a good sanity check

Motor network

Frontal parietal network

Other Tools

- Epilepsy Spike detection:
 - SAMepi operates on the filtered time series data to flag voxels displaying excess kurtosis
 - SAMhfo operates in frequency space to flag voxels with spikes in the high frequency portion of the spectrum

Mark Sweep; wikipedia

Experimental tools (coming soon!)

SAMcoreg

Data driven method for determining the optimal coregistration between the MRI and the MEG based upon the normal vectors of the cortical surface

Types of Beamformers

Vector Beamformer

At each voxel, solve for orthogonally oriented current sources

Scalar Beamformer

At each voxel, solve for the optimal orientation of a single current source

In the cortex, we already know the optimal orientation...

SAMcoreg

- Requires an MRI adequate for accurate Freesurfer parcellation
- Extremely computationally intensive
- Completely eliminates the need for potentially inaccurate fiducial placement and localization

ROIwts and PATCHwts

Rather than calculate the beamformer weights at every voxel, calculate them for every patch in a parcellated cortical surface

- Higher Signal to Noise
- Use Freesurfer parcellation or coordinate lists and extents
- Requires SAMcoreg

Rank Vector Entropy – sam_entropy

 \uparrow Entropy = \uparrow complexity = \uparrow information carriage

Symbolic Transfer Entropy (coming soon)

- Measures directed transfer of information
- STEers computes event related changes in symbolic transfer entropy in ECoG data
- STEcoherence calculates the optimal decay rate of information transfer based upon comparisons with a surrogate dataset

New directions?

• We welcome user engagement, problems to be solved, and requests for added capabilities