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Abstract
This paper details a methodology which, when applied to magnetoencephalography (MEG)

data, is capable of measuring the spatio-temporal dynamics of ‘disorder’ in the human

brain. Our method, which is based upon signal entropy, shows that spatially separate brain

regions (or networks) generate temporally independent entropy time-courses. These time-

courses are modulated by cognitive tasks, with an increase in local neural processing char-

acterised by localised and transient increases in entropy in the neural signal. We explore

the relationship between entropy and the more established time-frequency decomposition

methods, which elucidate the temporal evolution of neural oscillations. We observe a direct

but complex relationship between entropy and oscillatory amplitude, which suggests that

these metrics are complementary. Finally, we provide a demonstration of the clinical utility

of our method, using it to shed light on aberrant neurophysiological processing in schizo-

phrenia. We demonstrate significantly increased task induced entropy change in patients

(compared to controls) in multiple brain regions, including a cingulo-insula network, bilateral

insula cortices and a right fronto-parietal network. These findings demonstrate potential clin-

ical utility for our method and support a recent hypothesis that schizophrenia can be charac-

terised by abnormalities in the salience network (a well characterised distributed network

comprising bilateral insula and cingulate cortices).

Introduction
Electrical brain activity, recorded by magnetoencephalography (MEG) or electroencephalogra-
phy (EEG), is typically analysed using time-frequency decomposition to reveal a set of oscil-
latory signals. These signals, termed neural oscillations, are observed across a wide spectral
range (~0–200 Hz) and offer unique insights into the electrophysiological mechanisms that
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underpin brain activity (e.g. [1]). Oscillations reflect rhythmic and synchronous current flow
across many cells; evidence suggests that large amplitude alpha (8–13 Hz) and beta (13–30 Hz)
oscillations are markers of inactivity, since when a cortical network is engaged, the amplitude
of these oscillations is reduced (e.g. [2,3]). At a cellular level this makes logical sense; break-
down in synchrony across cells facilitates information encoding within a network: Little infor-
mation can be encoded in a network of cells firing in synchrony; however a breakdown in
synchrony, which allows cells to fire independently, will increase capacity for processing. Thus,
loss of synchrony (decrease in oscillations) reflects increased processing. In electrophysiologi-
cal measurements, a loss of synchrony means measured signals become more disordered in
time (i.e. they look more like random noise) and this is often interpreted as a loss of measurable
effect. However an increase in disorder likely reflects an increase in processing in the brain and
quantification of this process would represent a valuable metric of brain dynamics.

In this paper, we describe a method that enables quantitative assessment of the spatio-tem-
poral dynamics of disorder in the brain. Our method is based upon entropy which, in a broad
sense, is often taken as a measurement of disorder; the higher the entropy in a system, the
greater the disorder. More specifically, entropy allows assessment of moment-to-moment tem-
poral variability in electrophysiological timecourses. Signals with high variability and low
predictability (e.g. Gaussian noise) exhibit high entropy whereas highly ordered signals (e.g. os-
cillations) exhibit low entropy. In this sense, entropy can be thought of as a measure of how
much information is in a system, with high entropy (high disorder) meaning more informa-
tion. There is a growing literature, reviewed recently by Garrett et al. [4] which shows that mea-
suring disorder (or moment-to-moment variability) provides novel and exciting insights into
human brain function in health and disease. Specific examples of the use of entropy or related
measurements include neurodevelopment [5,6], autism [7], Alzheimer’s disease [8] and schizo-
phrenia [9] amongst others. These measurements show great promise, however present meth-
odologies are limited; some studies involve MEG or EEG sensor space measures, precluding
generation of accurate spatial information. Further, most studies assess entropy across large
time windows which precludes assessment of temporal dynamics. In the present paper, we aim
to highlight a method that provides: 1) a spatial parcellation of functional brain anatomy based
upon entropy measurement and 2) the temporal evolution of entropy throughout a cognitive
task. Together this facilitates a unique picture of brain dynamics.

Schizophrenia is a severe and poorly understood neuropsychiatric disorder characterised by
a breakdown of thought processes and impaired emotional response. A prevalent theory re-
garding the neuropathology involves a ‘dysconnection hypothesis’ [10,11], implying abnormal
connectivity between spatially separate brain regions. (Note here that we use the generic term
‘connectivity’ to mean either structural (physical connections between brain regions), function-
al (a statistical interdependence between signals derived from separate regions) or effective (a
directed functional interaction between separate regions) connectivity.) Recent work [12] sug-
gests that some of the core symptoms of schizophrenia may be explained by abnormal function
in a ‘salience network’, a collection of brain regions which includes bilateral insula and cingu-
late cortices. fMRI studies show that these regions exhibit a high degree of functional connec-
tivity in healthy individuals and recent work shows abnormal effective connectivity between
nodes of the salience network in schizophrenia patients relative to controls [12]. Such abnor-
malities may have implications for entropy measurement. Fernández et al. [13] summarise an
elegant argument that ‘progressive isolation of two brain regions would allow each region to ex-
press its own dynamical characteristics. Assuming stationarity of connectivity, this could lead
to increased disorder (entropy) in the nodes of brain networks that exhibit a disconnection.
This, coupled with the salience network findings summarised above, suggests a hypothesis that
schizophrenia patients would show increased entropy in separate nodes of the salience network,
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reflecting the breakdown of connectivity. Previous work [9,14,15,16,17,18,19,20,21] (see also
[13] for a review) shows some support for increased disorder in schizophrenia patients relative
to controls. However there is disagreement in the literature, with other studies showing de-
creased disorder (e.g. [22,23,24]). In the present paper, we will use our methodology to measure
the spatio-temporal signature of disorder, and provide direct inference on where, and when,
the brain of a patient exhibits abnormalities.

In what follows, we describe how to combine a recently developed MEG based entropy mea-
surement [25] with independent component analysis (ICA) to elucidate the spatiotemporal dy-
namics of disorder in the human brain. We use MEG since it offers the best compromise of
non-invasive measurement with good (~5 mm) spatial resolution and excellent (~1 ms) tem-
poral resolution. We apply our method in healthy control subjects, and schizophrenia patients,
with both groups undertaking the same two cognitive tasks. In healthy controls we use the spa-
tiotemporal dynamics of entropy to build a unique picture of brain activity, and to test the hy-
pothesis that increased cortical processing leads to localised and transient changes in disorder.
We further show how, in healthy controls, these entropic dynamics relate to the more classical
oscillatory measures. In schizophrenia, we show that our methodology has clinical utility by
testing directly our hypothesis that dysconnectivity within the salience network will manifest
as increased disorder in the cingulo-insula cortices. Finally, we compare our measurements
(which are based upon rank vector entropy (RVE)) with a more established measure of entropy
called multi-scale entropy [26,27].

Methods
MEG data were recorded in 14 healthy volunteers and 13 patients satisfying the DSM-IV crite-
ria for schizophrenia. Nine of the patients were receiving anti-psychotic medication, but none
had experienced a change in antipsychotic, antidepressant, or mood-stabilizing medications in
the 6 weeks prior to the study. A clinical interview by a research psychiatrist was performed to
ensure that the controls were free from a current psychiatric disorder, history of psychotic or
neurological disorders, or a history of psychotic illness in a first degree relative. The study was
given ethical approval by the National Research Ethics Committee, Derbyshire, United King-
dom and the University of NottinghamMedical School Research Ethics Committee. All partic-
ipants gave written informed consent.

Cognitive tasks
All subjects completed two cognitive paradigms; a visual Sternberg and a relevance modulation
(RM) task.

Sternberg. The Sternberg task allows measurement of brain activity during the encoding,
maintenance and retrieval phases of working memory. Here, we used a visual Sternberg experi-
ment (as described in [28]). A single trial comprised presentation of two example visual stimuli
(black abstract shapes on a grey background, shown for 600ms with 1s between onsets). This
was followed by a 6s maintenance period and a third probe stimulus (duration 3s). The subject
was asked to respond if the probematched either of the two example stimuli. A single block
comprised three trials followed by a rest block of 36s (from which we calculate baseline entropy
and oscillatory amplitude); 15 blocks were presented to each subject; the probability that a
probe matched one of the examples in any given trial was 0.5.

RM task. In the RM task, the task-relevance of visual stimuli was manipulated [28]. Sub-
jects were shown a series of visual stimuli (of duration 800ms) in which pictures of butterflies
were alternated with pictures of ladybirds. Inter-stimulus-intervals were jittered, with an aver-
age of 1.92 ± 0.08s. A single block comprised presentation of 40 alternating stimuli, followed

Measuring "Disorder" in Schizophrenia

PLOS ONE | DOI:10.1371/journal.pone.0120991 April 17, 2015 3 / 23



by a resting phase (from which baseline entropy and oscillatory amplitude were computed).
Blocks were 120s in total. At the beginning of each block, subjects were informed whether the
relevant stimuli were butterflies or ladybirds. In blocks where butterflies were relevant (BF), the
subject’s task was to respond when the butterfly on the screen matched an example butterfly
(shown at the start of the block). Matches were identified based on shape, outer wing colour
and inner wing colour. In blocks where ladybirds were relevant (LB), the task was to respond if
the number of red ladybirds was equal to the number of yellow ladybirds. In both block types,
the target stimuli were rare (probability = 0.05), and these trials were excluded from subsequent
analyses. Eight blocks were presented to each subject, in the order: BF, LB, LB, BF, LB, BF, BF,
LB.

All participants were given an explanation of the two tasks outside the scanner as well as an
opportunity to practice, ensuring all subjects could complete both tasks.

Data Acquisition
MEG data were acquired using the third order synthetic gradiometer configuration of a 275
channel MEG system (MISL, Coquitlam, Canada), at a sampling rate of 600Hz and using a
150Hz low pass anti-aliasing filter. Three fiducial coils were attached to the participant’s head
at the nasion, left and right preauricular points. These coils were energised periodically to allow
localisation of the head relative to the geometry of the MEG sensor array. Prior to data acquisi-
tion, the surface of the participant’s head was digitised (Polhemus, Isotrack). Subsequent sur-
face matching of the digitised head shape to a head shape extracted from an anatomical
magnetic resonance (MR) image allowed coregistration of brain anatomy to MEG sensor ge-
ometry. The anatomical MR image (1 mm cubic resolution) was acquired using a Philips
Achieva 3T MRI system running an MPRAGE sequence.

Data Analyses
MEG data were initially inspected for artefacts. Trials containing excessive interference were
removed. Participants found to have moved more than 8 mm during the scan were rejected
from the study. This initial data screening left 11 healthy controls and 11 patients, who were
used in subsequent analyses. Data analysis comprised multiple stages; the overall pipeline is
summarised by Fig 1, and each component part is described in detail below.

Beamforming
Beamforming [29,30,31,32,33] was used to project extra-cranial MEG data into source space to
generate timecourses of electrophysiological activity at a set of locations (voxels) in the brain.

The electrical source strength, Q̂yðtÞ, at location and orientation (θ), and at time t, was estimat-
ed using a weighted sum of sensor measurements thus:

Q̂yðtÞ ¼ wT
ymðtÞ 1

wherem(t) is a vector of magnetic field measurements made atM sensors at time t and wθ is a
vector of weighting parameters tuned to location and orientation θ. The weights were derived
based on minimising the variance of the output timecourse, with a linear constraint that vari-
ance originating at θ remains. Mathematically, the weights are given by:

wT
y ¼ ½hT

yfCþ mSg�1
hy��1

hT
yfCþ mSg�1 2

where hθ is the lead field vector for location and orientation θ, C represents the data covariance
matrix and S = η2I where η2 represents an estimate of the white noise at each MEG sensor
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(estimated as the smallest singular value of C). I is the identity matrix and μ is a regularisation
parameter (here μ = 4). Source orientation at each voxel was computed using a non-linear
search for the maximum projected signal to noise ratio; note that source orientation was re-
stricted to the tangential plane.

In the beamformer implementation used, voxels were defined at the vertices of a regular (8
mm) grid spanning the entire brain. The dipole model used to calculate the lead fields was
based upon a multiple local spheres head model [34], and the field equation derived by Sarvas
[35]. Covariance was computed using data from the entire experiment and spanning the full
1–150 Hz frequency range in order to minimise the effect of correlated sources and maximise
reconstruction accuracy [36].

Rank Vector Entropy (RVE)
Rank Vector Entropy (RVE) is a computationally efficient and high signal to noise algorithm
recently introduced by Robinson et al. [25]. It combines symbolic entropy with a leaky integra-
tor in order to transform timecourses of electrophysiological activity into a timecourse showing
the temporal evolution of entropy. Note that RVE is nonparametric and is independent of
source amplitude. The procedure is depicted in Fig 2.

Consider a timecourse, X, measured at a sampling rate, f. We first selectW samples, at inte-
ger (ξ) intervals, from this timecourse, starting at sample k. This means that the selected vector
can be written asWk ¼ ½xk; xkþx; xkþ2x; xkþ3x . . . xkþðW�1Þx�. (i.e. if ξ = 2, then every second data

Fig 1. Flow chart summarising the overall data analysis pipeline.

doi:10.1371/journal.pone.0120991.g001
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point is selected). The vector,Wk, is then transformed into its associated rank vector, Rk, this
means that the indices of the components ofWk are ranked, according to the magnitude of
those components. For example, the vectorWk = [3.3,2.7,2.8,4.6,6.0] would be transformed to
the rank vector Rk = [2,3,1,4,5] (see also Fig 2).

If the rank vectors containW elements, there areW! possible rank vectors to choose from;
e.g. if W = 5, the set contains 5! = 120 possible rank vectors. We now assume the existence of a
look up table which contains each of the possible rank vectors and allows a conversion from
any one rank vector, to a ‘symbol’ (e.g. in the example shown in Fig 2, Rk = [1, 2, 3, 4, 5] would
be assigned the symbol Nk = 1; Rk = [1, 2, 3, 5, 4] would be assigned the symbol Nk = 2 and so
on). If we allow the window,Wk, to translate in time along the timecourse X, by incrementing
k, this will allow iterative computation of multiple realisations of the rank vector, and therefore
calculation of multiple symbols (i.e. we will get one new symbol, each time we increment k).
The occurrences (frequency) of each symbol can then be counted. This facilitates computation
of a frequency distribution, Fk, which shows the frequency of occurrence any one symbol.

The purpose of RVE is to generate information on the temporal dynamics of entropy, which
is achieved via the use of a leaky integrator. This is designed to integrate a result over time, but
allows a small amount of the input to ‘leak’ out, such that, as time is sequentially advanced, the
contribution of previous windows is diminished. In RVE this is achieved by an extra modifica-
tion of the frequency distribution Fk with each iteration, such that Fk = αFk–1 where alpha is
less than 1. This scaling is applied to all values in the frequency distribution before the symbol
for the current iteration is incremented. The value of the constant, α is determined by a time
constant τ such that α = exp(−1/fτ). τ therefore represents the time taken for the counts to
decay to a fraction of 1/e times their original value. Note that if α = 1, RVE gives the cumulative
frequencies over all samples (i.e. all time); however with α< 1, the result generates a frequency
distribution that changes in time. This can then be used to define the temporal dynamics of en-
tropy. The frequency distribution, Fk, is used to generate a probability distribution, Pk, by

Fig 2. Schematic diagram detailing the calculation of Rank Vector Entropy.

doi:10.1371/journal.pone.0120991.g002

Measuring "Disorder" in Schizophrenia

PLOS ONE | DOI:10.1371/journal.pone.0120991 April 17, 2015 6 / 23



normalising by the total integral of the frequencies across all symbols. For each step, k, the “in-
stantaneous” Shannon entropy can then be computed as:

SðkÞ ¼ 1

lnðw!Þ
Xw!

n�1
� pnðkÞlnðpnðkÞÞ 3

Note that for RVE to work, the time constant τmust be sufficiently long for all of the states
in the frequency distribution to be populated. In the present work, we apply RVE with a time
constant τ = 0.3s, ξ = 2 and w = 5. The RVE method was applied sequentially and independent-
ly to all voxels in source space (i.e. all voxels in the beamformer projected MEG data). This
yielded a 4D dataset for each subject showing the temporal evolution of entropy at all locations
in the brain.

Independent Component Analysis (ICA) and regional analysis
Having generated 4D matrices via entropic transformation, we aimed to decompose these into
a small number of temporally independent components, depicting voxels which exhibit similar
temporal (entropy) profiles. To achieve this, entropy timecourses from the entire experiment
for all voxels were down-sampled to a 1s time resolution. This down-sampling acts to reduce
the total amount of data, making ICA computationally feasible. Data were then spatially nor-
malised to a template brain in MNI space and concatenated across subjects and tasks, thus gen-
erating a single dataset representing all 22 subjects and both tasks. This 4D dataset was
reshaped into a 2D matrix, which we term Λ, containing only voxels inside the brain; temporal
ICA was then applied such that the measurements inΛ were defined as linear mixtures of inde-
pendent signals S, thus:

L ¼ AS 4

Here, A represents a mixing matrix which defines the contribution of each independent signal
to each voxel; the columns of A thus represent the spatial profiles of each independent compo-
nent which can be thought of as a spatial basis set.

Temporal ICA was applied using the fastICA algorithm [37] implemented in matlab [re-
search.ics.tkk.fi/ica/fastica]. The method of application was identical to that described in previ-
ous papers [28,38], apart from the number of independent components extracted. Pre-
whitening was applied, which used a basic principle component analysis (PCA) (based upon ei-
genvalue decomposition of the projected envelope data covariance matrix) to reduce the data-
set to 45 principal components (to improve computational efficiency). Following this, ICA was
applied and 40 components extracted. These 40 components were able to explain 84% of the
variance in the multi-subject, multi-task concatenated 4-dimensional dataset. Of these 40 com-
ponents, 12 were selected for further analysis. When applying ICA to experimental data, the
question of how to select components of interest is always an issue. In this paper, we followed
the same method as used in previous papers [28,38] and components were originally selected
based upon visual inspection. Only those components whose spatial map could be readily in-
terpreted were retained; all of the spatial maps identified either single brain regions, or multiple
brain regions, comprising well characterised foci or networks (e.g. left motor cortex, visual cor-
tex, fronto-parietal network etc.). A general linear model analysis showed that the 12 compo-
nents retained explained 54% of the total data variance across all brain voxels (prior to PCA)
and 64% of variance the data retained post ICA. The robustness of these components was also
tested using a post-hoc Monte Carlo type analysis (see S1 Appendix for details).
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Following ICA, electrophysiological timecourses for each of the 12 spatial components were
reconstructed via a weighted sum of the original beamformed voxel timecourses (See Fig 1).
The weights were generated directly from the columns of the mixing matrix, A, which were
thresholded to leave only contributions from voxels within the regions of interest. Reconstruc-
tion in this way facilitates a single electrophysiological timecourse for each spatial map derived.
These timecourses can then be used to generate a regional entropy signal (at the full temporal
resolution, rather than the down-sampled (1s) time resolution used for ICA) and also a region-
al time-frequency spectrogram. Time-frequency spectrograms were generated via Hilbert
transformation of band pass filtered data, employing 33 overlapping bands spanning the
1–150Hz range. Entropy and time-frequency spectrograms were computed independently for
the Sternberg and RM tasks and results were averaged across task trials. For the Sternberg task,
trial averages were computed within a 0 to 12s time window spanning presentation of the two
example stimuli, the maintenance phase, and the probe stimulus. For RM, average signals were
calculated within 0 to 2s windows following both relevant and irrelevant stimuli, thus facilitat-
ing comparison between conditions.

Entropy signals were compared to time frequency spectra via computation of the Pearson
correlation coefficient. Correlation was estimated between the entropy timecourse, and the os-
cillatory envelope which was again calculated within each of the 33 frequency bands studied. In
all cases, correlation was computed using unaveraged data, and on each dataset individually.
Results were subsequently averaged across datasets and standard deviation assessed. This anal-
ysis was undertaken for all 12 of the brain regions studied.

Multi-scale Sample Entropy (MSE)
The RVE calculations described above were supplemented with the more established technique
of multi-scale sample entropy. This was to verify that any changes observed in schizophrenia
using RVE were generally indicative of altered entropy in schizophrenia.

Sample entropy (SampEn) [39] assesses the predictability of a timecourse. Starting at point
k, m+1 points are selected as a template time series. Following this, the remainder of the time
series is examined for matches to this template (all matches to the first m points, and all m+1
points are counted separately). This analysis is repeated, moving the initial starting point k,
and counting the total number of template matches of length m and length m+1. Sample entro-
py is then defined as the natural logarithm of the ratio of these two numbers, and indicates the
likelihood of predicting the subsequent data point from the first m data points in a timecourse
(a schematic of this process is shown in Fig 3). There are two variables which affect the estimate
of SampEn: m, which governs the length of the template, and the tolerance, r, which governs
what qualifies as a match. Here, we employ m = 2 and r = 20% of the timecourse standard devi-
ation [27].

MSE is an extension of sample entropy and calculates SampEn at different temporal scales
[26,27]. The scale of the timecourse reflects how much it has been down-sampled. A scale of 1
is the original time series; a scale of 2 indicates that the timeseries has been downsampled by
averaging non-overlapping groups of 2 points. Mathematically:

QdsðjÞ ¼
1

s

Pjs
i¼ðj�1Þsþ1QðiÞ 5

where s is the scale factor, Q is the input timecourse, and Qds is the down sampled version of Q.
The regional beamformer projected timecourses were used as an input for MSE, in order to
allow direct comparison of MSE and RVE. MSE was calculated on a per-trial basis and results
averaged across trials, and participants in each group. For the RM task, trials were split into
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relevant and irrelevant trials and processed independently. The scale factor was varied from 1
to 20 for Sternberg, and from 1 to 10 for RM (due to the shorter data segments).

Changes in schizophrenia
To test the hypothesis that patients exhibit a greater change in entropy when engaged in a task
compared to controls, the measured entropy change due to a task was calculated using both
RVE and MSE. For RVE, the average change in entropy across the duration of both the Stern-
berg and RM tasks was used. For MSE, each scale factor was tested independently. Permutation
testing was used to assess statistical significance of the task induced entropy change between
patients and controls: 500,000 iterations were performed where two sham data sets were creat-
ed with an equal mix of patient and control data, to create a null distribution of the difference
between two data sets. The real data were compared to this null distribution to assess signifi-
cance. Bonferroni correction was applied to account for multiple comparisons across the sepa-
rate regions studied (i.e. threshold for significance, p< (0.05/N), where N = 12). In addition to
the permutation test, a non-parametric sum-rank test was also employed, again with multiple
comparisons controlled by Bonferroni correction. A difference between groups is reported
only if both tests showed statistical significance.

Results

The Spatiotemporal signature of complexity
The RVE/ICA method yielded a spatial basis set, which is shown in Fig 4. The functional maps
depict the spatial signatures of 12 temporally independent components which were selected for
further analysis. Each of these maps represents a brain region (or collection of brain regions)
that generates an independent temporal evolution of entropy. In this way, we allow spatial par-
cellation of the cortex, based upon its functional anatomy. The regions selected are well charac-
terised and include visual cortex, motor cortex, cingulo-insula region, pre-motor cortex, the
left and right fronto-parietal networks, the tempero-parietal junction and the left and right
insula cortices. This spatial basis set was employed as a platform upon which all subsequent
analyses were based. It is important to note that this approach offers significant advantages
over voxel based metrics. Specifically, ICA allows us to decompose several thousand voxel

Fig 3. A simulated time-series is shown in blue, the template points are shown in solid squares, and the shaded grey areas indicate the points that
are within ± r (tolerance) of these template points. The unfilled squares indicate points that match the template points to form sequences of length m or m
+1 (here m = 2). The template points are moved sequentially through the time-series, and the total number of matches of length m, and length m+1
are calculated.

doi:10.1371/journal.pone.0120991.g003
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timecourses into a smaller number of independent components, reducing multiple comparison
problems that inevitably arise in subsequent statistical testing (see also discussion).

Fig 5 shows entropic time-courses and time-frequency spectrograms for 4 of the 12 regions
identified in Fig 4. In the entropy timecourses, the zero-line (black solid line) represents resting
level entropy (computed within a rest block), and so timecourses show transient change in en-
tropy induced by the task, relative to baseline. Similarly, the time frequency spectrograms are
also plotted relative to baseline, with blue representing decreased oscillatory power with respect
to rest and red/yellow representing increased oscillatory power.

Fig 4. Spatial signatures of 12 independent components, derived from ICA applied to entropic transformation of MEG data concatenated across all
subjects, and tasks.Regions identified include the visual cortex, the left and right motor cortices, cingulo-insula cortex, pre-motor cortex, the left and right
fronto-parietal networks, the left and right temporo-parietal junction and the left and right insula cortices. This represents a unique method to parcellate the
cortex, based upon the temporal signature of entropy. Images are displayed in radiological convention.

doi:10.1371/journal.pone.0120991.g004

Measuring "Disorder" in Schizophrenia

PLOS ONE | DOI:10.1371/journal.pone.0120991 April 17, 2015 10 / 23



Fig 5 shows that both the Sternberg and RM tasks elicit transient, task driven changes in en-
tropy, and neural oscillations. Taking the visual cortex as an example, during the Sternberg
task, two peaks in entropy are visible in the first two seconds corresponding to presentation of
the two example visual stimuli. A 3rd peak then follows at ~8 seconds corresponding to the
probe stimulus. Similar transient increases in entropy are observed for the RM task, with a
more prominent effect in the relevant compared to the irrelevant case. Entropy changes during
the task differ across brain regions with, for example, the left primary sensori-motor region
only demonstrating an appreciable change during the relevant phase of the RM task, and with-
in a ~2s window centred on the probe stimulus during the Sternberg task. Results are presented
for the left hemisphere; however similar measurements were made for the homologous regions
in the right hemisphere. Interestingly, less marked changes in entropy and time frequency
spectrograms were observed in the right hemisphere. The variance in trial averaged entropy
was significantly (p<0.05 corrected, non-parametric sum-rank test) lower in the right fronto-
parietal network relative to the left, indicating a degree of left hemispheric lateralisation in in-
formation processing for both the RM and Sternberg tasks. (The average variance of the entro-
py timecourse was also significantly lower in the right sensorimotor area relative to the left, as
would be expected given that both tasks involved a right handed button press.)

Fig 5 shows the importance of characterising the time evolution of entropy (as distinct from
a single measure spanning the whole experiment). Our results are consistent with the notion
that increased entropy is associated with a transient increase in local cortical processing. Or

Fig 5. Entropic time-courses and time-frequency spectrograms are given for the visual, left motor, left fronto-parietal and left insula regions. The
upper panel shows results for the Sternberg task and the lower panel shows results for the RM task. For entropic timecourses, the blue line shows change in
entropy from baseline level; the shaded region shows standard error across subjects. Time-frequency spectrograms show deviation from resting state
oscillatory amplitude, with red and blue showing increased and decreased oscillatory amplitude respectively. Note that both tasks elicit transient changes in
signal entropy. Note also the differences in temporal profile of entropy across brain regions.

doi:10.1371/journal.pone.0120991.g005
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put another way, increased information processing necessitates the breakdown of synchrony
across neurons to increase efficacy of encoding of information within a local neural network.
This manifests as a spatially localised and transient increase in the entropy of the measured
electrophysiological signal.

The relationship between entropy and neural oscillations
The majority of MEG experiments are processed via exposition of the time-frequency signature
of neural oscillations. Comparing entropic timecourses to the spectrograms in Fig 5, it is clear
that a relationship exists, with decreases in oscillatory amplitude in the alpha and beta band ac-
companied by a transient increase in entropy. Given that oscillations and entropy are generated
from the same underlying beamformer projected timecourses, coupled with the fact that oscil-
lations are highly predictable and therefore low entropy, this would be expected. However, it
proves instructive to probe this relationship further by comparing the time-courses of change
in oscillatory amplitude across the frequency spectrum, to the entropic time-courses. Such
comparison reveals a non-linear relationship, summarised in Fig 6, which shows temporal cor-
relation between the Hilbert envelope of oscillations and the entropy timecourses. Note that
the relationship exhibits a general trend with a negative correlation between entropy and alpha
and beta band oscillatory amplitude, and a positive correlation at higher frequency. Note also a
weak negative correlation in the delta and theta range. An effect of signal to noise ratio (SNR)
is apparent: in general, the SNR of alpha and beta band oscillations is higher than that of
gamma oscillations. This probably explains the higher (absolute) correlation between entropy
and alpha and beta oscillations, compared to gamma oscillations. Most importantly, we note
that that no simple one-to-one relationship exists between the entropic timecourse and oscil-
latory power in any one frequency band.

Fig 6 also reveals subtle differences in the biphasic response between regions. For example,
in the visual cortex, the strongest negative correlation is in the alpha band, whereas the motor
cortex demonstrates the strongest negative correlation across both the alpha and beta bands. In
insula cortex, the negative relationship also peaks across the alpha and beta bands; however
this negative correlation is weaker than in the visual and motor regions, but the insula cortices
exhibit a stronger positive correlation between entropy and gamma oscillations. Note also that
the zero crossing point differs between regions, being ~50 Hz in the motor and visual cortices
but ~40 Hz in the insula cortices. It therefore follows that whilst a relationship exists between
entropy and time frequency decomposition, this relationship changes with the brain region

Fig 6. The relationship between neural oscillatory amplitude and signal entropy in the visual, motor and insula cortices. Note the general trend that
entropy exhibits a negative correlation with alpha and beta oscillations and a positive correlation with gamma oscillations. Inset images show the spatial
maps of the regions used. The mean correlation across subjects is shown and error bars show standard deviation across subjects.

doi:10.1371/journal.pone.0120991.g006
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studied and entropy cannot be considered a surrogate metric for any one frequency or group
of frequencies.

The neural oscillatory amplitudes across all frequencies were combined in a general linear
model to probe the degree to which the amplitude envelope of oscillations, across the 1–150Hz
band, could explain the entropy observations. The GLM was applied as:

s ¼ Gbþ � 6

where s represents the entropy timecourse. The design matrix, G, comprised a single column
for every frequency band and contained neural oscillatory envelopes (which were orthogona-
lised (as required by linear regression) using singular value decomposition of the covariance
matrix GGT), and ε represents the error. The parameters, β, represent the contribution of each
frequency to the entropy signal and are directly related to the correlation coefficients shown in
Fig 6. This procedure, computed individually for 11 healthy controls in the Sternberg data, was
used to compute the percent variance explained in the entropy signal, by the neural oscillations.
The result showed that, on average over all subjects and all brain regions shown in Fig 4, only
36±1% of the variance in entropy could be explained by oscillations. This simple analysis im-
plies that the entropic signal, whilst clearly showing a significant relationship with oscillations,
also contains some unique information that cannot be gained by looking only at time
frequency spectrograms.

Entropic measurement in schizophrenia
Fig 7 shows trial averaged entropy time-courses, for the Sternberg and RM tasks, for control
subjects (blue) and schizophrenia patients (red). Results are shown for the visual cortex (A),
the cingulo-insula component (B), the left motor cortex (C) and the right motor cortex (D). As
with the entropy metrics in Fig 5, the zero-line represents resting entropy, and time-courses
show stimulus induced change from baseline. The bar charts in Fig 7 show mean task induced
entropy change in healthy controls (left) and patients (right) for each region; these measure-
ments are collapsed across subjects and tasks (i.e. 22 independent MEG sessions in each group)
and error bars show standard error across subjects. The principal result, summarised by Fig 7B,
shows that in the cingulo-insula cortex, task induced entropy change is higher in patients than
controls. The between group difference was found to be significant at a p<0.05 level, Bonfer-
roni corrected across the 12 brain regions studied (this was true both using permutation test-
ing, and a non-parametric Wilcoxon sum-rank test). In addition to the cingulo-insula
component, significantly increased entropy was recorded in both the left and right insula corti-
ces and the right fronto-parietal network. None of the other brain regions in Fig 4 reached sta-
tistical significance although a trend was noted in the left motor cortex.

Again note the importance of characterising temporal dynamics of entropy throughout the
experiment (as distinct from summary measures collapsed across task/rest windows). Fig 7
shows clear evidence that, whilst a significant increase in entropy in patients is observed
throughout the Sternberg and RM tasks, this increase is time dependent. For example, in the
RM task, the largest difference between patients and controls occurs following a relevant stimu-
lus, and at approximately 1s latency following stimulus presentation. In the Sternberg task,
whilst a difference in entropy between patients and controls persists throughout the average
trial, the magnitude of this difference peaks within the 8–10s time window, which coincides
with the presentation of the probe stimulus. Other, more subtle trends are noted in the motor
cortices. For example, in healthy controls, the entropic response in both the Sternberg and RM
tasks is characterised by an entropy increase during stimulation, followed by a decrease below
baseline and subsequent recovery to the resting level. Fig 7C shows that, in patients, the
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increased entropy elicited by the response persists across a larger temporal window, and does
not exhibit the post response dip below baseline observed in controls.

The difference in entropy between patients and controls, observed in Fig 7, is based upon
RVE, which allows direct inference on the temporal evolution of entropy in the brain. In this
RVE implementation, we assess temporal variation on a timescale of 3.4ms (taking every sec-
ond time sample at a sample rate of 600Hz); entropy is calculated using a leaky integrator with
a (1/e) window width of 0.3s. In other words, whilst the timecourses in Figs 5 and 7 look tem-
porally smooth, RVE assesses temporal variability at a millisecond timescale. This said, entropy
can be measured at any temporal scale and it proves instructive to assess multiple scales in
order to test whether the observed differences persist when using a slower timeframe. To
achieve this, we used MSE [26,27], which has been employed in previous schizophrenia mea-
surements (e.g. [9]) and in addition to offering a means to assess the effect of temporal scale,
also allows a means to compare our RVE methodology to others previously employed. Results
are given in Fig 8, which shows the task induced change in MSE (ΔMSE) plotted against tem-
poral scale in the visual cortex (A), cingulo-insula cortex (B), left motor cortex (C) and right
motor cortex (D). Results are in agreement with our RVE metrics (Fig 7) in showing signifi-
cantly increased task related entropy change in patients compared to controls. (p<0.05, cor-
rected for multiple comparisons across the 12 regions). More importantly, Fig 8 also shows

Fig 7. Time-courses in the visual cortex (A), cingulo-insula cortex (B), left motor cortex (C) and right motor cortex (D) showing task induced
change in baseline entropy.Results are presented for schizophrenia patients (red) and healthy control subjects (blue) in the relevant and irrelevant phase
of the RM task, and the Sternberg task. Bar charts show averaged entropy change during task, compared to rest, collapsed across both tasks. Note that in
the cingulo-insula cortex, a significant (corrected p < 0.05) increase in entropy in patients, relative to control subjects is observed. Note also that the
difference between patients and controls changes as a function of time, highlighting the importance of dynamic assessment of entropy.

doi:10.1371/journal.pone.0120991.g007
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clear evidence that this observation is critically dependent on the timescale at which entropy is
assessed, with significant results observed only at the most rapid timescales (scales of 1 and 2,
corresponding to sampling at 1.7ms and 3.4ms scale respectively). These timescales are approx-
imately equivalent to those used for RVE. Finally, note that whilst the primary results showing
increased entropy in patients relative to controls is confirmed by MSE, no information on the
temporal evolution of entropy is generated.

Discussion

Methodology and the relationship between entropy and neural
oscillations
Our aim in this methods paper was to elucidate spatial variability and temporal dynamics of
disorder in MEG signals. RVE [25] combines symbolic entropy with a leaky integrator in order
to characterise the temporal evolution of entropy. This facilitates non-linear transformation of
beamformer projected MEG data into timecourses showing ‘instantaneous’ entropy of the lo-
calised signal. Note that this analysis was applied to broad-band (1–150 Hz) signals as narrow-
band signals have low entropy by definition. Beamforming and entropic transformation yields
a set of temporal signals (one per source space voxel) which, using our method, are

Fig 8. Multi-scale-entropy, measured in the visual cortex (A), cingulo-insula cortex (B), left motor cortex (C) and right motor cortex (D).Graphs
show change in MSE from rest in patients (red) and controls (blue) for the RM and Sternberg tasks. Bar charts show specific cases for scales 1 and 2. Note
that there is general agreement between RVE (Fig 4) and MSE (Fig 5) in showing an increased entropy difference in patients relative to controls. Note also
that this difference depends on temporal scale, and is maximumwhen entropy is measured on the very short timescale (i.e. scales of 1 and 2). * indicates
p<0.05 corrected.

doi:10.1371/journal.pone.0120991.g008
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concatenated across subjects and decomposed into a smaller set of independent components.
This decomposition has the key advantage that it reduces data dimensionality: Reducing sever-
al thousand voxels to a small number of independent components reduces the multiple com-
parisons problem that will inevitably be faced in subsequent statistical testing. Without ICA,
one would have to correct for multiple comparisons across voxels; since Bonferroni correction
would prove overly conservative (due to the inherent spatial smoothness of the beamformer re-
construction) this would necessitate estimation of spatial smoothness using techniques such as
Gaussian Random Field Theory [40]. Using ICA, the timecourse data are not only reduced in
dimension, but the method naturally generates an ICA mixing matrix which provides an effec-
tive spatial map, showing the contribution of each voxel to each independent component. Fol-
lowing decomposition, multiple comparisons can be corrected accurately using the Bonferroni
method, since the individual regions represent independent measures of brain activity. The
ICA mixing matrix also provides a principled way to compute a weighted average of entropy
signals within the derived regions of interest. Averaging timecourses across multiple voxels has
the desirable effect of improving signal to noise ratio, meaning that the regional entropy time-
courses are likely to exhibit higher signal-to-noise ratio than underlying voxel timecourses,
again demonstrating the utility of ICA. Note that, using MEG, the natural smoothness of the
beamformer reconstruction means that this increase in SNR is not as pronounced as it would
be in, for example, fMRI where the increased spatial resolution means that neighbouring voxels
are more likely to be independent. However, those spatial patterns in Fig 4 that span multiple
resolution elements in the beamformer reconstruction [40] will gain an advantage in SNR. Fi-
nally, we note that, although the ICA approach has many advantages, it remains limited, in
part, because whilst some of the identified independent components will be of interest, others
will necessarily reflect noise. A judgement must therefore be made as to which components to
keep and which components to ignore (note that this is not a limitation of the RVE/ICA meth-
od per se, but rather is a general problem with ICA applied to any dataset). Here, the compo-
nents we chose to keep were selected based on their spatial signature and task induced change
in their timecourse.

In this paper, we chose to employ beamforming as a means to project extra-cranial data into
brain space. Beamforming is a popular MEG inverse solution which exhibits good spatial reso-
lution. Its adaptive nature also allows for excellent interference rejection properties, meaning
that non-neuronal signals are minimised [38]. This said, a disadvantage is that spatially sepa-
rate but temporally correlated neural sources are suppressed and often mislocalised. It is con-
ceivable that, in some studies, researchers may find other inverse projection algorithms more
suitable. We therefore note that entropic transformation and subsequent ICA could be used in
conjunction with any source localisation methodology.

Results in Fig 4 show that spatially distinct regions generate independent entropic profiles.
The fact that ICA yields regions that are well characterised in terms of their functional anatomy
implies that entropy is a physiologically meaningful signal. This is further supported by the
trial averaged entropy signals in Fig 5, which show that both the RM and Sternberg tasks evoke
transient changes in entropy. In general, an expected increase in cortical processing (for exam-
ple in the visual cortex during visual stimulus presentation) is characterised by increased entro-
py; this supports the idea that increased information processing necessitates the breakdown of
synchrony to increase efficacy of encoding. Comparison of the timecourses of local entropy
with the time frequency spectrograms in Fig 5 implies that task induced increases in entropy
are temporally coincident with, and to an extent driven by, decreased alpha and beta band os-
cillatory amplitude, and therefore loss of synchrony across neurons. We again stress that time-
frequency spectra and entropy timecourses are generated from the same underlying data. It is
known that changing the oscillatory dynamics in a signal will alter entropy, with a prevalence
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of narrow band oscillations reflecting low entropy and broad band disordered signals reflecting
high entropy. A negative relationship between oscillations and entropy should therefore be ex-
pected, however it is not the case that entropy is a surrogate for alpha and beta
envelope signals.

In the brain regions we examine (selected on the basis of entropy—not oscillations), the am-
plitude envelope of low frequency (1 to 40Hz) oscillations is negatively correlated with the en-
tropy timecourses as expected, whereas the envelope of higher (>50Hz) frequency oscillations
is positively correlated. Importantly, this relationship differs between brain regions; for exam-
ple, correlations between entropy and oscillatory amplitude in the visual cortex differed from
those in the motor cortex, and bilateral insula cortex based on both spectral signature and cor-
relation strength. It therefore follows that no simple one-to-one relationship exists between os-
cillations and entropy. It is also of interest to note the weaker negative correlation between
delta and theta oscillations and entropy, compared to alpha and beta oscillations. Previous
work [41] shows that theta oscillations are associated with working memory, and as prevalent
narrow band oscillations would be expected to generate a decreased entropic signal in the same
way as alpha and beta oscillations do. However, theta oscillations are task induced and often
transient. Recall that the relationship shown in Fig 6 represents correlation between oscillatory
envelope and entropy across the entire experiment; the theta oscillations themselves may there-
fore be dominated by other, more temporally sustained effects in alpha and beta bands; this
may explain the weaker correlation.

In summary, entropy is not a direct reflection of oscillations, but rather a broadband com-
posite signal that provides a broad picture of brain activity. It is driven, in part, by oscillations
and allows a principled combination of frequency bands which differs depending on the brain
region studied. This integration over frequency, coupled with the leaky integrator (collapsing
measurements over time) means that entropy signals exhibit a high SNR. It is instructive to
note that a change in oscillatory dynamics does not necessarily imply a change in entropy. For
example consider a case where a stimulus evokes a shift from narrow band low frequency oscil-
lations to narrow band high frequency oscillations, both signals are low entropy, and therefore
may not generate a measured entropy change. Conversely, a change in entropy may not be ob-
served by time-frequency decomposition: for example consider a case where a change in entro-
py is brought about by a subtle increase in broad band signal. This would generate a large
change in entropy but may be ‘washed out’ in a time-frequency spectrogram which would be
dominated by oscillations. We therefore suggest that oscillations and entropy should be treated
as related, but potentially complementary metrics of electrophysiological brain activity. This
complementarity is also evident from a neuroscientific standpoint. In the present manuscript
we have stressed the importance of increased entropy in local networks in order to promote in-
formation processing. However healthy brain function must rely on a delicate balance between
disorder and coordination between spatially remote cortical circuits (which facilitates integra-
tion of information). Long distance communication is likely to be mediated by neural oscilla-
tions [42], with different frequencies relating to different scales of cortical integration [41].
This means that considering both entropic and oscillatory transforms of the MEG signal has
potential to provide insights into local activity, long range communication, and
their relationship.

Finally, it is interesting to note a similarity between Fig 6, and measurements showing the
relationship between neural oscillations and the blood oxygenation level dependent (BOLD)
haemodynamic response measured using fMRI [3]. Temporal correlation between BOLD and
oscillatory signals also shows a biphasic response, with negative correlation in the alpha and
beta bands, and positive correlation at high frequency. Future work may therefore probe a po-
tential relationship between entropy and BOLD.
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‘Disorder’ in schizophrenia
An emerging picture of schizophrenia has implied that abnormal effective connectivity persists
between separate nodes of the salience network, implying a reduction in integrative processing
across this well characterised network [12]. In the present paper, we aimed to test the hypothe-
sis that entropic measurement in schizophrenia would show increased disorder within separate
nodes of this same network, reflecting, albeit indirectly, the breakdown of connectivity. Our
findings support this hypothesis. Firstly, as expected from the disconnection hypothesis and in
support of previous studies [14,15,16,17,18,19,20,21], we elucidate a general finding of in-
creased task induced entropy change in patients relative to controls. Moreover, these abnor-
malities were observed to be statistically significant in the cingulo-insula regions as well as
bilateral insula cortices and the right fronto-parietal network. Note that we tested all 12 regions
highlighted in Fig 4, employing a multiple comparison test across regions; the fact that three of
the four regions (cingulo-insula, left and right insula) that exhibited a significant result coin-
cide spatially with the well-known salience network nodes offers support that this network
may be abnormal in schizophrenia. (From a methodological point of view, this also highlights
the importance of spatial localisation.) Our results support the recent finding suggesting a
breakdown in salience network connectivity, and further add to this picture by suggesting that
disrupted connectivity is accompanied by a concomitant increase in local entropy at each net-
work node. We speculate that such increases might reflect ‘inefficient processing’ where more
than the required degree of variation in the signal is necessary for carrying out specialised re-
gional brain functions. In the presence of normal connectivity, such increase in variance would
increase performance, but in schizophrenia this may only help to achieve near-normal perfor-
mance in cognitive tasks. Note that, in addition to the salience network, we also observed sig-
nificantly increased entropy in the right fronto-parietal network. The fronto-parietal network
that we observe is a good spatial match to the dorsal attention network (DAN) that has been
previously observed in fMRI. The DAN is known to exhibit an increased BOLD response dur-
ing performance of cognitively demanding tasks and is thought to relate to both attentional
and cognitive processes. The finding of abnormal entropy within this network is therefore
plausible and this should be the topic of future study.

Our study also generated other findings. Firstly, the differences between schizophrenia pa-
tients and control subjects were found to change in time. In the RM task, the largest difference
between patients and controls occurs at ~1s latency following a relevant stimulus. In the Stern-
berg task, the magnitude of the difference peaks within the 8–10s time window centred on pre-
sentation of the probe stimulus. In addition, temporally specific trends for higher entropy in
schizophrenia were observed in other brain areas, for example in the left motor cortex entropy
was slower to recover to baseline following a response in patients compared to controls. This
highlights the importance of studying time resolved entropy, as distinct from single measures
collapsed across task phases or whole experiments. Secondly, our results using MSE were in
agreement with our results using RVE in showing increased task related change in entropy in
patients relative to controls. However, we showed that temporal scale of the entropy measure-
ment affected the results, with significant differences between patients and controls only ob-
servable at the shortest timescales. This implies that whilst assessment of entropy can provide
insight into the neuro-pathological mechanisms underlying schizophrenia, those abnormalities
only exist over short timescales.

Finally, we should consider the limitations of the present study in terms of the schizophre-
nia findings. The present work was designed to provide a proof of principle that our methodol-
ogy could generate useful neurobiological insight into schizophrenia, but is not intended as a
complete and exhaustive study. We present plausible results that support a hypothesis of
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disconnections in the salience network leading to increased local entropy in salience network
nodes. However, the study was carried out in a small number of participants. Further, the pa-
tients involved were undergoing treatment and were therefore medicated. Previous work has
shown that entropy effects are dependent on medication, age and symptomology. Specifically,
young, highly symptomatic and medication naive patients are most likely to exhibit increased
entropy. For this reason, whilst we demonstrate promise for the entropy measurement, further
investigation in a larger group of patients is required.

Conclusion
We have described a novel methodology, applying a combination of beamforming, rank vector
entropy, independent component analysis and multi-scale-entropy, to MEG data in order to
characterise brain activity in healthy controls and patients with schizophrenia. We have shown
the utility of this technique in providing a broad spatio-temporal picture of brain activity and
how it is modulated during cognitive tasks, with an increase in local neural processing charac-
terised by a local and transient increase in entropy within the neural network. We have provid-
ed a demonstration of the clinical utility of our method, with our results confirming our
hypothesis that schizophrenia is characterised by increased disorder in nodes of the salience
network, supporting the idea that impaired connectivity between these nodes may contribute
to core symptoms of the disease. The novel methodology in this manuscript, together with the
results generated from it, has significant potential for application in future MEG measurements
of neural signalling in health and disease. RVE is an as yet under-used technique, which exhib-
its extremely high SNR and offers novel insights into basic neuroscience. Additionally, the ease
of use and non-invasive nature of the technique make it highly suited to clinical diagnosis and
tracking efficacy of intervention. Although we demonstrate our method in schizophrenia, we
believe that these methods could find application across a range of neurological disorders.

Supporting Information
Data supporting our paper are supplied; these data comprise the raw images presented in Fig 4
of the main manuscript, as well as regional timecourses for the visual area, left motor area and
the cingulo-insula regions. In accordance with the PLoS style, we provide a legend for these
files below.
S1 Appendix. Text and figures for the appendix to the main manuscript.
(DOCX)

S1 Con. Zip file containing data from the 1st control subject.
(ZIP)

S2 Con. Zip file containing data from the 2nd control subject.
(ZIP)

S3 Con. Zip file containing data from the 3rd control subject.
(ZIP)

S4 Con. Zip file containing data from the 4th control subject.
(ZIP)

S5 Con. Zip file containing data from the 5th control subject.
(ZIP)

S6 Con. Zip file containing data from the 6th control subject.
(ZIP)
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S7 Con. Zip file containing data from the 7th control subject.
(ZIP)

S8 Con. Zip file containing data from the 8th control subject.
(ZIP)

S9 Con. Zip file containing data from the 9th control subject.
(ZIP)

S10 Con. Zip file containing data from the 10th control subject.
(ZIP)

S11 Con. Zip file containing data from the 11th control subject.
(ZIP)

S1 Pat. Zip file containing data from the 1st patient.
(ZIP)

S2 Pat. Zip file containing data from the 2nd patient.
(ZIP)

S3 Pat. Zip file containing data from the 3rd patient.
(ZIP)

S4 Pat. Zip file containing data from the 4th patient.
(ZIP)

S5 Pat. Zip file containing data from the 5th patient.
(ZIP)

S6 Pat. Zip file containing data from the 6th patient.
(ZIP)

S7 Pat. Zip file containing data from the 7th patient.
(ZIP)

S8 Pat. Zip file containing data from the 8th patient.
(ZIP)

S9 Pat. Zip file containing data from the 9th patient.
(ZIP)

S10 Pat. Zip file containing data from the 10th patient.
(ZIP)

S11 Pat. Zip file containing data from the 11th patient.
(ZIP)

S1 RVE Regional Images. Images shown in Fig 4 of the main manuscript in .nii format.
(NII)
Each .zip folder contains four files: Regional_timecourses_Relmod_�.mat contains an N x 3
matrix where the 3 columns contain the raw beamformer projected timecourses collapsed
across the three representative regions for the relevance modulation dataset. (Note N repre-
sents number of time points). Regional_timecourses_Stern_�.mat contains an N x 3 matrix
where the 3 columns contain the raw beamformer projected timecourses collapsed across the
three representative regions for the Sternberg dataset. SternbergMarkerFile.mat contains
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details of the timing of the Sternberg task RelModMarkerFile.mat: Contains details of the tim-
ing of the relevance Modulation task.
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