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Optically Pumped Magnetometers

1. What are optically pumped magnetometers and what do they measure?
2. Neuroscientific applications around the world

3. Our project at NIH for high spatial and temporal resolution measurements/imaging
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Principle of operation
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Principle of operation i
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Variations of commercial OPMs and OPMs under development
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SQUID-based and OPM-based systems

Operating temperature

Sensitivity
Bandwidth

Sensor array

Number of sensors

- o MEG Core

SQUID based MEG

5K, vacuum between
head and coils

needed
5-10fT/VHz

~600HZz*

Fixed, gap between
scalp and sensor
(~2cm)

>100

* For a sampling rate of 2400 Hz

FieldLine Inc.

OPM based MEG

Room temperature

~10fT/VHz*

~200Hz

Fixed or flexible, placed on

subject’s scalp

10-60

**Trade-off between sensor size and sensitivity



OPMs around the world

SSSSSS


https://www.nicepng.com/maxp/u2r5r5u2i1t4e6i1

Applicationsevoked

Nottingham Somatosensory evoked responses (Boto
et al, 2017)
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Kernel (LA) Auditory evoked responses (Pratt et
al, 2021)
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Aalto Visual evoked responses (Livanainen et al,

2020)



ApplicationsMulti-modal imaging

Nottingham

Magnetic field (fT)

-200

Hyperscanning (Holmes et al, 2021) Birmingham (Jensen and Kowalczyk)

Simultaneous EEG and OPMs (Boto et al,

2019)
Integration with virtual reality (Roberts et al,
2019)
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Applications

Children
ULB [Brussels] (Feys et al, 2021)
Sickkids » Interictal epileptiform discharges in children (5-11
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Applications

Brain computer

interfaces
@ Chariteé
S >
- . ® (Berlin) .
Kernel @ . . /
ROBIN_ _HOOD
KU Leuven- ROB I
Notthingham
(Witte I mal, 2021)

subject 1 subject 2 subject 3
RAIN BRAIM KU_LELWEN
KU _LEUVEN CYBORG ROBIM_HOOD

FOUANTUM | KU LEUWEN |BRAIM
Elcorect | ROBIN HOOD | ROBIN HOOD | #QUANTUM
By | CYBORG HQUANTUM | CYBORG

accuracy | 40/43 (93.0%) | 38/38 (100%) | 38/38 (100%)




From a wearable version of SQUID-MEG...

Livanainen et al, 2020

Kernel Flux
Cerca Magnetics

FieldLine Inc.
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... tO0 @ non-invasive version of ECoG

OPMs at
NIH
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OPMs at Magnetocorticography (MCoG)

e , ECOG

Electrocorticograpty
Wikipedia

gold standard for IED
detection

but invasive procedure +
associated bleeding/infection
risk

SQLIIIBNWE to epilepsy patients

Non-invasive

Interictal spikes can be
detected

But cannot distinguish
between closely-spaced
sources of similar amplitude

MCoG[OPMs]

Shares advantages of SQUID-MEG

Can distinguish between closely-

spaced sources of similar
amplitude

Applications

* |dentify the ictal onset zone in epilepsy

e Separate signals from cortical lamina

* Understand local cortical networks in
language production

* Brain-computer and Brain-machine interface
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OPMs at
NIH

rets)

(+3

Accurate

FDM printer (Stratasys
Objet 260 Connex 3)
Rigur plastic, res: 0.001
inches

Curvature r=80mm
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O P M S at * FDM printer (Stratasys

Objet 260 Connex 3)
I“ * Accurate * Rigur plastic, res: 0.001
I H (+3 <+ Keep sensors as tightly packed as inches

. * Curvature r=80mm
refs) possible

2D reconstructed image
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Nugent et al, under review
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OPMs at

N| * Accurate
Initial s l)l |l3 sensors (+3 ¢ Keep sensors as tightly packed as
refs) possible
* Reference array
* Fixed
Localization error (mm) of sensor position Gap (mm) between sensor and scalp
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OPMS at Challenges . 3Snsors neat
NIH 43 . Caiibration

rets)
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O P M S at Challenges . ﬁge)nsors neat
NIH . Caiibration

Graphite foil Air Heat Sink Cooling cap
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OPMs at
NIH

e Sensors heat
Challenges p

e Crosstalk

e (Calibration

* In dense arrays, modulation and negative
feedback fields are sensed by neighboring
sensors

* Can affect the orientation of a sensor’s
sensitive axis

30
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OPMs at Challenges ~ o5 0= - 1
NIH . Calibration

* For maximum accuracy of source localization/ * In dense arrays, modulation and negative
discrimination feedback fields are sensed by neighboring
* To calibrate gain and axis of each sensor sensors

* Can affect the orientation of a sensor’s
sensitive axis

Independent source resolution (ISR)

Correlation matrix M

Axis error (degrees) Gain error (%)

1.0 1 1
0.9 0.9

©
o 0.8 0.8 0.8
© 0.6 0.7 0.7
S : 0.6 0.6
£ 0.4 05 ®-orm
7 F 0.4 0.4
n 0.2 0.3 03
= 0.0 0.2 0.2
0.1 0.1
0 0

Reconstructed 0 0.5 1 2 3 4 5 0 1 2 383 4 5 6 7 8 9 10
ISR= mean(diag(M))-mean(off-diag(M)) Nugent et al, under review

......
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OPMS at Challenges . 3§nsors heat

e Crosstalk
N I H . . .. e Calibration
0 \ Calibration jig

* Coils energized sequentially with function generator
* Recorded by sensors placed on calibrator
* Field modeling is performed

. . . . e A hollow semi-sphere with 37 coils in it
Coil orientation in jig  (oils are arranged in different “rings” it Sreryee NN
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Next

Digit representation in somatosensory cortex

Sanchez-Panchuelo et al, 2012

Solve current challenges:
PPt - Fine-tune calibration algorithm
|“’_ | i - Assess thermal mitigation strategy in 7x8 array
P o I - Weight relief mechanism for sensor fixture
- Keep ambient fields at zero

- Right median nerve stimulation.  DC removal + 300Hz (Mu Coils: from static to dynamic zeroing)

500 us pulse duration, 0.35s ISl |ow pass filter
400s duration « ~1140 trials
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Mu Coils

Magnetic Shields

The remnant field inside most MSRs can be several tens of nT with a spatial variation of several nT over 10 cm
Even small head movements and rotations can result in complete loss of data, or data which is corrupted by motion artefacts



Applications

Nottingham
- Hyperscanning (Holmes et al, 2021) Birmingham (Jensen and Kowalczyk)
- Simultaneous EEG and OPMs (Boto et al,

2021)
- Integration with virtual reality (Roberts et

al, 2019) .
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UCL
-  Hippocampal measurements (Barry et al,
2019)

- Magnetospinography (Bestmann lab)
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